Interval mapping of quantitative trait loci for time-to-event data with the proportional hazards mixture cure model.
نویسندگان
چکیده
Interval mapping using normal mixture models has been an important tool for analyzing quantitative traits in experimental organisms. When the primary phenotype is time-to-event, it is natural to use survival models such as Cox's proportional hazards model instead of normal mixtures to model the phenotype distribution. An extra challenge for modeling time-to-event data is that the underlying population may consist of susceptible and nonsusceptible subjects. In this article, we propose a semiparametric proportional hazards mixture cure model which allows missing covariates. We discuss applications to quantitative trait loci (QTL) mapping when the primary trait is time-to-event from a population of mixed susceptibility. This model can be used to characterize QTL effects on both susceptibility and time-to-event distribution, and to estimate QTL location. The model can naturally incorporate covariate effects of other risk factors. Maximum likelihood estimates for the parameters in the model as well as their corresponding variance estimates can be obtained numerically using an EM-type algorithm. The proposed methods are assessed by simulations under practical settings and illustrated using a real data set containing survival times of mice after infection with Listeria monocytogenes. An extension to multiple intervals is also discussed.
منابع مشابه
Mixture cure model with an application to interval mapping of quantitative trait loci.
When censored time-to-event data are used to map quantitative trait loci (QTL), the existence of nonsusceptible subjects entails extra challenges. If the heterogeneous susceptibility is ignored or inappropriately handled, we may either fail to detect the responsible genetic factors or find spuriously significant locations. In this article, an interval mapping method based on parametric mixture ...
متن کاملMapping temporally varying quantitative trait loci in time-to-failure experiments.
Existing methods for mapping quantitative trait loci (QTL) in time-to-failure experiments assume that the QTL effect is constant over the course of the study. This assumption may be violated when the gene(s) underlying the QTL are up- or downregulated on a biologically meaningful timescale. In such situations, models that assume a constant effect can fail to detect QTL in a whole-genome scan. T...
متن کاملIdentification and Mapping of Quantitative Trait Loci Associated with Salinity Tolerance in Rice (Oryza Sativa) Using SSR Markers
Salinity stress is one of the most widespread soil problems next to drought, in rice growing areas. ReducingSodium (Na+), while maintaining Potassium (K+) uptake in rice are traits that would aid in salinity tolerance.Therefore, the identification of quantitative trait loci (QTLs) associated with those for Na+ and K+uptake, will enable breeders to use marker-assisted selection...
متن کاملA Bayesian Framework for Functional Mapping through Joint Modeling of Longitudinal and Time-to-Event Data
The most powerful and comprehensive approach of study in modern biology is to understand the whole process of development and all events of importance to development which occur in the process. As a consequence, joint modeling of developmental processes and events has become one of the most demanding tasks in statistical research. Here, we propose a joint modeling framework for functional mappi...
متن کاملMicrosatellite mapping of quantitative trait loci affecting carcass traits on chromosome 1 in half-sib families of Japanese quail (Coturnix japonica)
The objective of this study was to identify the quantitative trait loci (QTL) affecting carcass traits on chromosome 1 in Japanese quail. The populations comprised of 422 progeny in 9 half-sib families. Phenotypic data on carcass weight, carcass parts, and the internal organs were collected on 422 progeny. Nine half-sib families were genotyped for 8 microsatellite markers covering chromosomes 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 62 4 شماره
صفحات -
تاریخ انتشار 2006